
SSQA 11/13/2012

Self-Verifying Data 1

Doug Hoffman Copyright © 2012 SQM, LLC. 1

Self-Verifying Data

SSQA

November 13, 2012

Douglas Hoffman, BACS, MBA, MSEE,

ASQ-CSQE, ASQ-CMQ/OE, ASQ Fellow

Software Quality Methods, LLC. (SQM)

www.SoftwareQualityMethods.com

doug.hoffman@acm.org

2

After Functional Testing

Often after basic functional testing I go looking

for bugs that I didn’t consider. I try to create

combinations and sequences that might surface

interesting bugs. I like to get the computer to do

my work, so I look for a way to automate the tests

to do things I can’t do manually.

Self-Verifying Data is one oracle technique I

apply when working with automation and large

data sets.

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 2

3

Self-Verifying Data (SVD)

Self-verifying data is self-descriptive data, i.e.,

the data contains the key or clues as to what the

data is supposed to be.

For example, “This sentence is 52 characters in

length (including spaces).”

SVD is just one of many types of oracles

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

4

Strategies For SVD

• Self-Descriptive data

• Cyclic algorithms

• Shared keys (with algorithms)

• Attached hash code (“CRC”)

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 3

Self-Descriptive SVD

Describe the expected result with the data

– Name of font (e.g., Comic Sans MS)

– Color (e.g., Blue)

– Size (e.g., 36 point)

– The following line should be “xyz”

– Etc.

5Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Self-Descriptive SVD

• Usually hand generated, but can be

randomly generated

• Most often used with human oracles

• Automated oracles require semantic

analysis to interpret the description

• Usually very difficult to automate

recognition of attributes

6Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 4

7

Randomness and Tests

• Random number generators

– Pseudo-Random numbers

– Generating random seed values

– Repeat by reusing the seed value

• Use for randomized input values

• Use for generating randomized data sets

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Repeatable Random Series
RUBY code

MAX_SEED = 1_000_000_000

def initial_RNG_seed(myseed)

if (myseed == nil) # Check if seed is provided

Create a random number to seed RNG

puts "(no seed passed in, so generate one)"

myseed = srand()

myseed = rand(MAX_SEED)

end

print the seed so that we know the seed used

puts "myseed is #{myseed.to_s}\n"

foo2 = srand (myseed) # initialize the RNG

foo = rand() # generate the [first] random number

return foo

end

8Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 5

Random Series Output

Example
puts ("First run: #{initial_RNG_seed(nil)} \n \n")

puts ("Second run: #{initial_RNG_seed(400)} \n \n")

puts ("Third run: #{initial_RNG_seed(nil)} \n")

�

(no seed passed in, so generate one)

myseed is 144288918

First run: 0.3705579466087263

myseed is 400

Second run: 0.6687289088341747

(no seed passed in, so generate one)

myseed is 108495905

Third run: 0.09838898989988143

9Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Cyclic Algorithm SVD

• Use a repeating pattern to generate data

– E.g., start, increment, count

– E.g., basic string, count of iterations

• Identify the pattern in the result

• Confirm the actual pattern is the expected one

– Extract the pattern for the comparator

– Embed the key with the data

10Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 6

Cyclic Algorithm Examples

• “ab10abababababababababab”

– The first two characters are the series value

– The number is the number of repetitions

• {55, 10, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55}

– The first number is the series value

– The second number is the number of repetitions

• {5, 7, 10, 5, 12, 19, 26, 33, 40, 47, 54, 61, 68}

– The first number is 5

– The difference between values is 7

– There are 10 data values

11Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Cyclic Algorithms

• Simple repetitive patterns

• Quick and easy

• Data can be regenerated or key values

computed for verification

• Well suited for random data generation

• Automated oracles are straightforward

12Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 7

Shared Keys SVD

1. Generate a coded identifier (e.g., random

number seed)

2. Generate the test data using an algorithm

3. Attach the seed to the data

– Embedded

– Added field or envelope

4. Confirm by applying the algorithm using

the identifier

13Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Simple Shared Keys SVD

Example
Create a random name:

1. Generate and save random number seed (S) and
convert to a string

2. Use the first random value using RAND(S) as
the Length (L)

3. Generate random name (N) with L characters
using RAND()

4. Concatenate the seed to the name

14Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 8

15

Simple SVD Example

• Assume the seed (S) is 8 characters and name field

has a maximum of 128 characters

• Generate a random name with length of L

characters (a maximum of 120)

Name = … L Random characters … 8 character S

9 to 128 characters long

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Shared Keys SVD Example

Create a database record:

1. Generate a random number Seed (S)

2. Store the Seed value in an added field within

the record

3. Generate the record using the Seed and an

algorithm

4. Verify records using the Seed and algorithm

16Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 9

Shared Keys Approach

• Useful for generation of structured data

• Data can be regenerated for verification

• Well suited for generated random data

• Well suited for large volumes of data

• Automated oracles are straightforward

• Often used for parallel or post-test data

corruption checking

17Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Attached Hash Code SVD

• An algorithm is applied across all data to

generate a [nearly] unique value

• Append the computed value to the data

• Repeat the algorithm to compare appended

value with the newly computed value

18Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 10

Attached “CRC” Example

• CRC – cyclic redundancy check

– Start with the first data value as the working sum

– Circular shift the working sum by 1 bit

– Add the next number to the working sum

(ignoring overflows)

– Repeat until end of data

– Append this generated CRC to the data

– Check data integrity later by regenerating the

CRC and comparing with the appended one

19Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

Attached Hash Code Approach

• Useful for quick check of data

• Well suited for all kinds of data

• Well suited for large volumes of data

• Automated oracle is straightforward

• Used for post-test data corruption checking

• Vanishing small chance of false acceptance

20Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 11

Oracle Mechanisms for SVD

• Self-descriptive data

Usually human oracle

• Cyclic data

Regeneration

Pattern identification

• Random data

Regeneration

• Hash code check

21Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

22

‘SVD’ In Context

• May be useful:

− High volume of inputs or referenced data

− Key or seed can be used for data generation

− Straightforward to incorporate key with data

• Usually avoided:

− Outcomes don’t reflect SVD data

− Overly complex data structures

− Data not easily generated from a key

− Key not easy to include with data

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

SSQA 11/13/2012

Self-Verifying Data 12

23

Conclusions

• SVD embeds the answer (or its key) with the data

• Four basic types of SVD were identified:

− Self-descriptive

− Cyclic

− Random

− Attached hash code

• Sometimes SVD is very useful

− Error detection

− Unexpected side effects

• It is one of many oracle mechanisms

Doug Hoffman Copyright © 2012 Software Quality Methods, LLC.

